

DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX
QUANTUM LOGIC CIRCUITS

UNIVERSITY OF SOUTHERN CALIFORNIA

OCTOBER 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-202

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2017-202 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S /
JOSEPH OSMAN
Work Unit Manager

 / S /
JOHN D. MATYJAS
Technical Advisor, Computing
& Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

OCTOBER 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2015 – MAY 2017
4. TITLE AND SUBTITLE

DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX
QUANTUM LOGIC CIRCUITS

5a. CONTRACT NUMBER
FA8750-15-C-0203

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Massoud Pedram, Coenrad Fourie

5d. PROJECT NUMBER
DMTS

5e. TASK NUMBER
US

5f. WORK UNIT NUMBER
CA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
3720 S. Flower St., CUB 303, MC 0701
Los Angeles, CA 90089-0701

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-202
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2017-5039
Date Cleared: 17 OCT 2017
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The goal of this project was to investigate the state-of-the-art in design and optimization of single-flux quantum (SFQ)
logic circuits, e.g., RSFQ and ERSFQ and draw up a comprehensive research plan for developing a standard design
methodology and supporting computer-aided design tools for the SFQ logic at the register-transfer-level and below. In
the process, this project produced several preliminary, prototype software tools for proof-of-concept demonstrations,
including an RSFQ cell library, a prototype standard cell timing characterization tool, a prototype static timing analysis
tool, a prototype frontend logic synthesis tool, and a prototype backend place and route tool. The RSFQ library, and
software tools can be accessed at http://sportlab.usc.edu/downloads/download-protected/. For username and password,
please contact pedram@usc.edu.
15. SUBJECT TERMS
SFQ, RSFQ, ERSFQ, STA tool

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
JOSEPH OSMAN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

38

i

TABLE OF CONTENTS
Section Page
LIST OF FIGURES .. ii

LIST OF TABLES ... iii

1. SUMMARY ... 1

2. INTRODUCTION ... 2

3. METHODS, ASSUMPTIONS, AND PROCEDURES .. 3

3.1. Standard HDL-Enabled Cell Library for RSFQ Logic and Characterization of Cells 3

3.1.1. Investigate and develop a generic HDL timing model of RSFQ circuits 6

3.1.2. Characterize and release a standard cell library in HDL format 6

3.1.3. Develop a library characterization prototype tool ... 6

3.1.4. Validate and fine-tune the tool ... 8

3.2. Techniques and Tools for Static Timing Analysis In RSFQ-Based Circuits 11

3.2.1. Develop an STA technique for RSFQ circuits .. 12

3.2.2. Develop an STA prototype tool .. 13

3.2.3. Validate and fine-tune the tool ... 14

3.3. Logic Synthesis Algorithms for RSFQ Circuits ... 14

3.3.1. Specifications of Cell Library and Input Design .. 14

3.3.2. Path-Balancing .. 15

3.3.3. Splitter-Insertion for Fanouts .. 15

3.4. Cell Placement, Clock Tree Design and Routing in RSFQ-Based Circuits 18

3.4.1. Proposed Placement and Clock Tree Synthesis Tool ... 19

3.4.2. Proposed Routing Tool ... 22

3.4.3. Interconnect Delay and Frequency Modeling in RSFQ Circuits 25

4. RESULTS AND DISCUSSION ... 27

5. CONCLUSIONS ... 29

References .. 31

 List of Acronyms .. 32

ii

LIST OF FIGURES
Figure Page
Figure 1. Different layout versions of the AND logic cell. ... 5
Figure 2. Schematic representation, true to scale, of 1-bit full adder in row-based placement, with
different routing options. ... 5
Figure 3. Actual layout of the 1-bit full adder to test layout concepts. .. 5
Figure 4. Pulse detection in TimEx with a sliding voltage-time integrator. .. 8
Figure 5. Mealy state diagram of extracted RSFQ OR cell. .. 9
Figure 6. Verilog and JSIM simulations of the RSFQ OR cell, which shows that pulse positions match. 9
Figure 7. Verilog simulation of RSFQ OR cell, extracted with TimEx, where a timing violation occurs. 9
Figure 8. Excerpt from RSFQ AND gate Verilog structure extracted with first implementation of TimEx. 10
Figure 9. Excerpt from RSFQ AND gate Verilog structure extracted with improved version of TimEx. 11
Figure 10. Path identified in a 16-bit Kogge-Stone adder using BFS. ... 12
Figure 11. Schematic diagram to describe test bench setup around the Device-Under-Test in Timex. 13
Figure 12. Prototype STA tool for RSFQ-based designs. ... 13
Figure 13. Output snippet from the STA tool. .. 14
Figure 14. (a) 3-input AND gate (b) 3-input OR-gate (c) Critical margins of our complex gates. 16
Figure 15. Integer divider circuit implementation. ... 16
Figure 16. Bit-serial implementation of the 4-bit integer divider. HSM: Half Subtractor with Multiplexer;
FS: Full Subtractor; FSM: FS with Multiplexer. .. 17
Figure 17. Shift register for the load-and-shift operation. .. 17
Figure 18. Overall design flow... 18
Figure 19. Overall placement flow. ... 19
Figure 20. HL-tree clock network with a group size of 4. ... 20
Figure 21. 8 different instances of clock splitter cells. .. 21
Figure 22. A template for the logic part of a standard cell that implements a 2-input Boolean gate........ 23
Figure 23. A wave propagation method of Lee’s maze router algorithm. .. 23
Figure 24. Rip-up-and-re-route process of two nets, (a-a) and (b-b). .. 23
Figure 25. Cell Routing Transparency of a 2-input AND gate. .. 24
Figure 26. A feedback system design of the routing stage based on Qrouter. .. 25
Figure 27. H-tree clock network.. 26
Figure 28. HL-tree clock propagation delay. ... 26
Figure 29. Cell Structure for (a) H-tree clock network (2) HL-tree clock network. 27
Figure 30. Percentage of area savings using HL-tree clock network with group size of k. Total number of
30 rows and 48 cells per row is assumed. .. 27
Figure 31. Verilog verification of the operation of a 4-bit Kogge-Stone adder at 1 GHz. 29

iii

LIST OF TABLES
Table Page
Table 1. Routing Cost Parameters... 24
Table 2. Post place and route results for some arithmetic circuits. ... 28

Approved for Public Release; Distribution Unlimited.
1

1. SUMMARY

The goal of this project was to investigate the state-of-the-art in design and optimization of single-
flux quantum (SFQ) logic circuits, e.g., RSFQ and ERSFQ and draw up a comprehensive research
plan for developing a standard design methodology and supporting computer-aided design tools
for the SFQ logic at the register-transfer-level and below. In the process, this project produced
several preliminary, prototype software tools for proof-of-concept demonstrations, including an
RSFQ cell library, a prototype standard cell timing characterization tool, a prototype static timing
analysis tool, a prototype frontend logic synthesis tool, and a prototype backend place and route
tool. The RSFQ library, and software tools can be accessed at
http://sportlab.usc.edu/downloads/download-protected/. For username and password, please
contact pedram@usc.edu.

Approved for Public Release; Distribution Unlimited.
2

2. INTRODUCTION

To fulfill the main goal of this project, and develop a set of prototype design tool for SFQ design,
we have broken down the problem into a number of tasks. The following list enumerates the
tasks and subtasks of the proposed research.

1. Create a standard HDL-enabled cell library for RSFQ logic and characterize cells in the
library (Cell library)

a. Investigate and develop a generic HDL timing model of RSFQ circuits
b. Characterize and release a standard cell library in HDL format
c. Develop a library characterization prototype tool
d. Validate and fine-tune the tool

2. Develop techniques and prototype tools for doing static timing analysis in RSFQ-based
circuits (STA tool)

a. Develop an STA technique for RSFQ circuits
b. Develop an STA prototype tool
c. Validate and fine-tune the tool

3. Develop logic synthesis techniques and a prototype tool targeting RSFQ-based circuits
(Frontend tool)

a. Investigate logic synthesis algorithms for RSFQ circuits
b. Propose logic synthesis techniques for RSFQ circuits
c. Develop a logic synthesis prototype tool

4. Develop techniques and a prototype tool for cell placement and clock tree design in RSFQ-
based circuits (Backend tool)

a. Investigate inter-connect delay models in RSFQ circuits
b. Propose placement and clocking techniques for RSFQ circuits
c. Develop placement and clock tree design prototype tool

Description of deliverables is as follows:

• M/D (month 9): Characterize and release a standard cell library in HDL format
• M/D (month 12): Develop a library characterization prototype tool
• M/D (month 12): Develop an STA prototype tool
• M/D (month 18): Develop a logic synthesis prototype tool
• M/D (month 18): Develop placement and clock tree design prototype tool

Description of each phase of the project, methods and algorithms developed is mentioned in
Section 3. Results of the simulations on various benchmarks and circuits is discussed in Section
4. Finally, the report is concluded in Section 5.

Approved for Public Release; Distribution Unlimited.
3

3. METHODS, ASSUMPTIONS, AND PROCEDURES

Different methods and algorithms developed for standard cell library design, static timing
analysis, logic synthesis, and physical design are discussed in this section.

3.1. Standard HDL-Enabled Cell Library for RSFQ Logic and Characterization of Cells
We developed a cell library for RSFQ logic in the MIT-LL SFQ5ee process. To arrive at a generic
library in the short period allowed, some selections were made after due consideration:

1. Standard critical current density for Josephson junctions in a cell was set at 250 µA.

2. Cells were designed to be as fast as the process allows, so that we chose a slight under-
damped Stewart-McCumber parameter βC = 2 for all junction shunt resistors.

3. The cell library was designed to include a sufficient number of basic logic gates to allow
complete synthesis: the NOT, 2-input AND, 2-input OR, and XOR gates.

4. SFQ-specific cells included are: the Josephson Transmission Line (JTL), Splitter, D Flip-
Flop (DFF), Non-Destructive Readout Register (NDRO), Passive Transmission Line
(PTL) Driver and PTL Receiver.

5. The DC-to-SFQ Converter (DCSFQ) was also included to allow simulations with non-SFQ
input signals.

6. HDL modelling was done with Verilog.

7. Passive Transmission lines were fixed at approximately 5 Ω characteristic impedance.

Firstly, netlists representing the circuit schematics for each cell were designed for
electrical/transient simulation in JSIM. These netlists were analyzed for operating margins via a
margin analysis, and optimized through manual adjustment of low-margin parameters until circuit
netlists with optimal margins were obtained.

HDL model generation is discussed in the subsections below.

For place and route tool design and verification, we required physical layout specifications for all
cells, and example layouts of complete cells. Again, selections had to be made:

1. For row-based placement, all cells have equal height (the vertical layout dimension).

2. Cell width can vary between different logic cells, but must remain fixed for different layout
versions of the same logic cell.

3. Routing in buried PTL layers uses a stripline configuration, with ground planes above and
below the signal line.

Approved for Public Release; Distribution Unlimited.
4

4. PTL layers are accessed with vias surrounded by ground sleeves to minimize the

impedance discontinuity. Ground planes above and below PTL signal lines are stitched
together at arbitrary but user-definable intervals during interconnect synthesis. The via
surrounds and ground plane stitches impose layout constraints, so that PTL track pitch was
selected as 10 µm – leaving 5 µm for the line width (close to 5 Ω characteristic impedance)
and 5 µm between lines to accommodate via ground sleeve and ground plane stitch objects.

5. All cell layout dimensions (height and width, as well as pin placement) must match the
track pitch.

6. Bias pillars with ground plane vias for return current loop minimization are placed at
specific locations in a layout.

7. Provision is made for a clock splitter at the top of each clocked cell, or a JTL clock
propagation circuit at the top of each unclocked cell; but only for cells used with HL trees.

8. PTL drivers and receivers are built into cell layouts.

Generic layouts of the cells in the library were created as GDS files, as shown in Figure 1. Layout
concepts and validity, as well as applicability to row-based layout synthesis were tested with
example layouts, such as that of a 1-bit full adder shown in Figure 2 and Figure 3.

Approved for Public Release; Distribution Unlimited.
5

Figure 1. Different layout versions of the AND logic cell.

Figure 2. Schematic representation, true to scale, of 1-bit full adder in row-based placement, with different routing
options.

Figure 3. Actual layout of the 1-bit full adder to test layout concepts.

Approved for Public Release; Distribution Unlimited.
6

3.1.1. Investigate and develop a generic HDL timing model of RSFQ circuits
Although different timing models (such as setup and hold times) were considered, we eventually
opted for a model with only two timing parameters that we presented earlier [1]: delay and critical
timing. Here, delay timing describes the time from the arrival of an input pulse to the appearance
of an associated output pulse. Critical timing describes the minimum time between the arrival of
an input pulse to the arrival of a pulse at another input that would not violate the state transition.

Both timing parameters are state dependent, and are described as such in the extracted Verilog
models.

3.1.2. Characterize and release a standard cell library in HDL format
A hand-crafted standard cell library in Verilog HDL format was developed, but this was
superseded by the extracted library from the fully automated characterization tool described in
section 3.1.3.

3.1.3. Develop a library characterization prototype tool
A cell library characterization tool was developed to automatically characterize cells and extract
Verilog models. The tool, TimEx, operates as such:

1. A cell, or Device-Under-Test, is fed to TimEx along with a definition file. The definition
file defines excitation methods, source, load and sink cells. These are then automatically
combined with the input and output pins of the DUT to build a test bench.

2. The test bench is excited with all combinations of inputs, and states are searched.

3. States are detected by calculating the flux in every superconductive loop in the DUT.
Josephson junction inductance is approximated as the static inductance, which as expected
gives stable results where the more well-known small-signal equivalent inductance fails.

4. Each state is uniquely defined by its flux signature over all loops.

5. Once all states are known, each state is set up in turn, and all input combinations are probed.
Output pulses are detected and delay times calculated.

6. For timing parameters, we follow Müller and Fourie’s 2014 method [1], where critical
times between any two input pulses are found through binary searches.

7. We added the provision that a delay (shift) in output pulses caused by input combinations
approaching a state transition failure are also flagged as fail events. The allowable length
of this delay is a variable parameter.

Approved for Public Release; Distribution Unlimited.
7

8. Pulse position is found from transient JSIM analyses by numerical integration over a
sliding window. Window length and area detection threshold are user-definable.

9. Verilog model files are automatically constructed by TimEx to implement the timing
characteristics and states extracted for the DUT.

10. A state diagram is generated for every extracted DUT to allow easy verification of the state
dependencies.

11. Test bench files for both Verilog and JSIM are built automatically after extraction to allow
easy verification and comparison of the extracted model to the original JSIM circuit.

The advantage of this method is that TimEx needs no information on the actual cell operation (such
as the logic function). Roughly ten user parameters can be varied to control the limits of the
extraction engine, should slower or unusual gates need to be extracted.

For the state of a cell to be investigated, the flux in every cycle (or loop / mesh) in the circuit must
be evaluated. The flux is expected to be -1, 0 or 1 times the magnetic flux quantum (Φ0). An
algorithm thus finds all the meshes in the circuit so that cycle flux can be calculated from the sum
of branch currents multiplied by element inductances (where the static estimation of Josephson
junction inductance is used).

Resistive cycles would not store flux, so that any cycles that contain resistors are ignored. TimEx
also disregards cycles that contain any input or output ports, as the assumption is that flux storage
in the interconnect inductance between any load and input/output of the DUT represents
unacceptable circuit behavior.

Numerical errors and errors in the Josephson inductances lead to cycle flux results that are spread
over the range of roughly 0.9Φ0 to 1.1Φ0. TimEx then divides the cycle flux results by Φ0 and
rounds the values to the nearest integer (-1, 0 or 1), with the sign depending on the direction of
flux through a cycle.

Even though analyses of time-based electrical simulations of SFQ circuits mostly rely on the phase
evolution over Josephson junctions, TimEx investigates the voltage pulses at the inputs and outputs
of the DUT. This is necessitated by the Verilog descriptions, which require response to the arrival
of signals at the DUT inputs (which are typically inductors) and for which signal arrival times at
the outputs need to be specified.

A simple way to detect pulses is to look for the peak values in voltage versus time plots, but this
is risky. Firstly, a cell might fail to switch correctly and just create a ripple in the output of which
peaks might be mistaken for pulses. Secondly, measurement of the pulses between the inductances
of inputs/outputs to/from a load and the DUT often results in pulses that seem to oscillate, so that
the peak value could shift by a few picoseconds depending on the inductances.

The voltage pulses transmitted between SFQ elements integrate to exactly one fluxon, so that a
much more reliable way of detecting a pulse is to use a sliding numerical integrator. When the area

Approved for Public Release; Distribution Unlimited.
8

inside the sliding integrator is compared to a threshold (set as a fraction of Φ0), the time at which
the threshold is passed is a very stable way to characterize pulse arrival time.

In TimEx, the parameters SlidingIntegratorLength and PulseDetectThreshold set the length of the
sliding integrator window (in time) and the integrated area threshold as a fraction of Φ0 for pulse
detection respectively (c.f. Figure 4).

3.1.4. Validate and fine-tune the tool
The TimEx cell library characterization tool was validated through comparison of Verilog
simulations of extracted models with equivalent transient electrical simulations in JSIM.

The tool worked very well from the start, with the only fine-tuning required being that of
supporting exactly simultaneous inputs at two or more input pins.

An example extracted circuit, the RSFQ OR cell, is shown in as a Mealy state diagram in Figure
5, and in simulation in Figure 6 and Figure 7.

Figure 4. Pulse detection in TimEx with a sliding voltage-time integrator.

Approved for Public Release; Distribution Unlimited.
9

Figure 5. Mealy state diagram of extracted RSFQ OR cell.

Figure 6. Verilog and JSIM simulations of the RSFQ OR cell, which shows that pulse positions match.

Figure 7. Verilog simulation of RSFQ OR cell, extracted with TimEx, where a timing violation occurs.

Approved for Public Release; Distribution Unlimited.
10

A change in the way that Verilog models are built from cell extraction has been made to avoid
simulation errors when two inputs arrive in the exact same time step. Our earlier models used non-
blocking assignment of a change in cell state in response to inputs (see Figure 8), which caused
simultaneous inputs to miss the state change effected by each other. Our solution is a blocking
assignment of state change, and a case-endcase block to prevent the immediate assignment of a
state change from triggering other unwanted events, as shown in Figure 9.

always @(posedge a or negedge a) // execute at positive and negative edges of input
 begin
 if ($time>4) // arbitrary steady-state time)
 begin
 if (errorsignal_a == 1'b1) // A critical timing is active for this input
 begin
 outfile = $fopen("errors.txt", "a");
 $fdisplay(outfile, "Violation of timing in module %m; %0d ps.\n", $stime);
 $fclose(outfile);
 out <= 1'bX; // Set all outputs to unknown
 end
 if (errorsignal_a == 0)
 begin
 if (cell_state == 0)
 begin
 cell_state <= 1;
 end
 if (cell_state == 1)
 begin
 errorsignal_b = 1; // Critical timing on this input; assign immediately
 errorsignal_b <= #(ct_state1_a_b) 0; // Clear error signal
 errorsignal_clk = 1; // Critical timing on this input; assign imm.
 errorsignal_clk <= #(ct_state1_a_clk) 0;
 end
 if (cell_state == 2)
 begin
 cell_state <= 3;
 end
 if (cell_state == 3)
 begin
 outfile = $fopen("errors.txt", "a");
 $fdisplay(outfile, "Illegal input”);
 $fclose(outfile);
 out <= 1'bX; // Set all outputs to unknown
 end
 end
 end
 end

Figure 8. Excerpt from RSFQ AND gate Verilog structure extracted with first implementation of TimEx.

Approved for Public Release; Distribution Unlimited.
11

3.2. Techniques and Tools for Static Timing Analysis In RSFQ-Based Circuits
A Static Timing Analysis tool for RSFQ circuit designs was developed and tested using 4, 16 and
32-bit Kogge-Stone adders. The tool is written in C++ and is cross-platform. We utilize the timing
information from the HDL library generated by the RSFQ characterization tool TimEx. The tool
produces clocking information as well as path statistics for the DUT.

always @(posedge a or negedge a) // execute at positive and negative edges of input
 begin
 if ($time>4) // arbitrary steady-state time)
 begin
 if (errorsignal_a == 1'b1) // A critical timing is active for this input
 begin
 outfile = $fopen("errors.txt", "a");
 $fdisplay(outfile, "Violation of timing in module %m; %0d ps.\n", $stime);
 $fclose(outfile);
 out <= 1'bX; // Set all outputs to unknown
 end
 if (errorsignal_a == 0)
 begin
 case (cell_state)
 0: begin
 cell_state = 1; // Blocking statement -- immediately
 end
 1: begin
 errorsignal_b = 1; // Critical timing on this input; assign imm.
 errorsignal_b <= #(ct_state1_a_b) 0;
 errorsignal_clk = 1; // Critical timing on this input; assign imm.
 errorsignal_clk <= #(ct_state1_a_clk) 0;
 end
 2: begin
 cell_state = 3;
 end
 3: begin
 outfile = $fopen("errors.txt", "a");
 $fdisplay(outfile, "Illegal input”);
 $fclose(outfile);
 out <= 1'bX; // Set all outputs to unknown
 end
 endcase
 end
 end
 end

Figure 9. Excerpt from RSFQ AND gate Verilog structure extracted with improved version of TimEx.

Approved for Public Release; Distribution Unlimited.
12

3.2.1. Develop an STA technique for RSFQ circuits

RSFQ logic is synchronous and therefore needs to be clocked for the pulse to propagate to the next
gate. Initially we opted to identify the slowest gate-to-gate delay within the DUT and present this
as the system clock. This however proved to be an insufficient solution and further investigation
was done. The DUT needed to have a global clock at which the design would produce an output
for every clock pulse. To identify what this global clock speed needs to be, path identification
using a breadth first search (BFS) algorithm was employed. This algorithm finds all the paths from
input to any possible output in the design considering the branching that occurs when a splitter cell
is encountered. An example of a path identified using this algorithm is seen in Figure 10. Using
this algorithm, we are able to identify the critical path through the design. The critical path delay
(tcrit) is the summation of delays through all the logic and splitter cells in the critical path. The
global clock is then 1/tcrit and is the maximum speed the design would produce and output after
every clock pulse.

To identify the maximum system clock frequency with the DUT, further care is needed with
regards to what type of clocking scheme is employed by the design. For simple concurrent
clocking, the initial hypothesis would hold true and it would simply be the slowest gate-to-gate
delay. If, however H-tree or the hybrid HL-tree clocking scheme is used the system clock needs to
be determined using other means.

For either of the clocking schemes the DUT clock tree needs to first be rebuilt and path analyzed
to identify what form of clocking is used and how to approach the analysis. In the case of an H-
tree clocking scheme the fastest system clock that would produce no timing violations would be
the deepest branch from clock entry to any logic cell in the design assuming the H-tree is balanced.
For the HL-tree clocking scheme we need to find the shallowest non-clock tree related logic branch
and identify this as the ttree_min, from this point in any of the branches we determine the maximum

Figure 10. Path identified in a 16-bit Kogge-Stone adder using BFS.

Approved for Public Release; Distribution Unlimited.
13

delay from ttree_min depth through any logic cell summing the delays of any splitters along the way.
The system clock is then the maximum speed at which the clock within the DUT can propagate
without causing timing violations in any of the cells.

3.2.2. Develop an STA prototype tool
We present the design flow for a prototype STA tool for RSFQ-based circuits in Figure 11 and
Figure 12. In our first implementation, the only input file that we could analyze was a JSIM/SPICE
netlist file which had no apparent clocking scheme and would simply do a path identification by
using the SPICE nodes and would calculate the critical delay by summing the clock to output
delays for every cell in every path and finding the largest delay. This is of course a rough first
approximation, which produces an inaccurate global clock. As the project progressed, and the post
place and route output format crystallized, the STA concepts could be refined and the tool
improved.

The second input file that was introduced as DUT for the STA prototype tool, as a result of the
abovementioned extension of the tool, was a Cadence DEF file which is produced by the RSFQ
place and routing tool. This file contains a lot more information about the design including the
clocking scheme as well as the wire lengths and via locations between every gate. This allows us
to perform a much more accurate analysis of the DUT and in terms of the global clock as well as
the system clock.

START STA
TOOL

Read
input file DEF or NETLIST

Read DEF
file

Read
NETIST file

Determine
inputs

Determine
inputs or

use
supplied

Determine
wire and
via delays

Find all
paths

Find
critical
path

Determine
GLOBAL

CLK
DEF or NETLIST

Produce
results

END STA
TOOL

Determine
clocking
scheme

Determine
system
clock

Determine
slack and

other path
stats

Produce
results

N

D

N

D

Figure 12. Prototype STA tool for RSFQ-based designs.

Figure 11. Schematic diagram to describe test bench setup around the Device-Under-Test in Timex.

Approved for Public Release; Distribution Unlimited.
14

Further timing information is also presented along with the clock speeds for the DUT. Among this
information is the mean path time, path time variance as well as the standard deviation of the path
times. It also enables the designer to input a target time for the design which produces a slack
value. Positive slack meaning that the critical time is less than the target time and the design meets
the speed requirements set by the designer. A negative slack value indicates that the design does
not meet the speed requirements and a total slack value is produced which can be seen as a measure
of how badly the design misses the mark.

3.2.3. Validate and fine-tune the tool
The STA tool was tested with 8, 16 and 32-bit designs in both JSIM/SPICE netlist format as well
as DEF file format. The results with the 16-bit Kogge-Stone Adder suggest a maximum serial
speed of only 1.8 GHz as seen in the output snippet from the STA tool in Figure 13, assuming of
course that there is no pipelining. The maximum system clock when using the hybrid HL-tree
method is close to 10 GHz.

3.3. Logic Synthesis Algorithms for RSFQ Circuits
We use ABC [2] for logic synthesis. ABC is a software program written in C for synthesis and
verification of binary sequential logic circuits appearing in synchronous designs [2]. We have used
some of the existing features of ABC and added some new features so that an RSFQ circuit can be
synthesized using this tool.

3.3.1. Specifications of Cell Library and Input Design
Inputs to ABC include (i) a Verilog (or BLIF [3]) description of a standard CMOS circuit, and (ii)
a cell library, which is a list of all available gates along with their Boolean function, area, and
delay. ABC then synthesizes the netlist and maps it to the cells specified in the cell library such
that the circuit delay is minimized.

Figure 13. Output snippet from the STA tool.

Approved for Public Release; Distribution Unlimited.
15

3.3.2. Path-Balancing
RSFQ circuits are gate-level pipelined. Hence, every logic gate (cell) requires a clock signal to
process the data. In such a circuit, to ensure that the input data arrives at each cell at the correct
clock cycle, the circuit must be path-balanced. Path-balancing ensures that all paths in a circuit
from any primary input to any primary output have the same number of clocked cells (logical
depth). DFFs should be inserted between appropriate cells to path-balance a circuit. Using ABC,
we initially insert DFFs between any two consecutive cells, where the number of inserted DFFs is
equal to the difference between the logic levels of the corresponding cells minus one. Next, we run
the standard retiming algorithm in ABC to minimize the DFF (register) count in a sequential
circuit. At this step, we have a fully path-balanced sequential circuit with minimum number of
DFFs.

3.3.3. Splitter-Insertion for Fanouts
In the synthesized circuit, there will be many fanouts which are greater than one. After path-
balancing, we visit each gate of the circuit and if we find a fanout greater than one, we insert
splitters using a balanced binary tree structure to minimize the latency through splitters. However,
large fanouts are not desirable in RSFQ technology, since large fanouts not only complicate
placement and routing, but also decrease the clock frequency as delay of splitting signals increases.

Accordingly, we are investigating synthesis methods to produce circuits with small fanouts. The
main research conducted could be sub-divided into following categories:

1. Simulation of RSFQ cells and circuits and the Generation of RSFQ Library:
We spent lot of time trying to understand the concepts of RSFQ and the availability of
several gate circuits for the project usage. We simulated all the basic gates using the JSIM
simulator and created a cell-library with our own JSIM netlists. The synthesis of circuits is
done using our self-generated gates.

2. Design of Complex gates:
A circuit with a large number of logic levels (higher depth), typically requires more path-
balancing DFFs (PB-DFFs), which subsequently increases the area and power
consumption of the circuit. Logical depth also indicates the latency of the circuit. This
implies that if we can design a single logic cell to realize a relatively complex Boolean
function, using this single cell instead of implementing it with basic 2-input cells, not
only reduces the total cell count, but also decreases the logical depth of the circuit. Thus,
using complex cells is helpful in reducing the area, power consumption, and latency of
RSFQ circuits. For this purpose, we designed 3, 4, 5-input AND and OR gates and a
special 3-input cell to implement A + BC (AND-OR), which is widely used in the carry
look-ahead adder (CLAs). Accordingly, our A + BC cell generates the output in one
clock stage with a clock-to-Q delay comparable to that of a 2-input AND cell, while
using 2 input gates, it requires 2 clock cycles to produce the output. Schematics of 3-
input AND and OR cells and the corresponding margins are shown in Figure 14.

Approved for Public Release; Distribution Unlimited.
16

3. Integer divider circuit Generation

The basic implementation of an integer divider circuit is shown in Figure 15. Modifications were
done to the below structure to reduce the total number of gates required for the implementation
of the integer divider.

Figure 14. (a) 3-input AND gate (b) 3-input OR-gate (c) Critical margins of our complex gates.

0 0 0 d3 0 d2 0 d1 D3 d0

0 d3 d2 d1 D2 d0

0 d3 d2 d1 D1 d0

0 d3 d2 d1 D0 d0

Q3

Q2

Q1

Q0

R3 R1 R0

HSHS FSFS

FSM
FS

0 1

BinBout

Sel

X Y

HSM
HS

0 1

Bout

Sel

X Y

≡ ≡

≡ ≡

Dx: bit x of dividend
dy: bit y of divisor
Qz: bit z of quotient
Rw : bit w of reminder

NDROs are added
here in the pipelined

implementation

R2

Figure 15. Integer divider circuit implementation.

Approved for Public Release; Distribution Unlimited.
17

We came up with several designs to optimize the area and speed of the integer divider circuit.
One such implementation has a slow clock and a fast clock. The slow clock serves as the clock
signal for Non Destructive Read Out DFFS (NDROs), which separate different stages of logic
(pipeline DFFS). The fast clock is used for the rest of the gates in the circuit. Another design is a
bit-serial design which has only one row of logic. To implement the bit-serial integer divider, we
used two shift registers: One to perform the load-and-shift operation, and the other for the save-
and-shift operation. For the load-and-shift operation, we used mergers in between DFF cells. All
data bits are loaded into the merge block inputs and subsequently stored in the corresponding
DFFs. We used the slow clock to operate these DFFs. At each cycle, the concerned data bit gets
into the first HSM (Half Subtractor with Multiplexer) cell of the bit-serial divider structure,
moving from the most significant bit to the least significant bit. For the save-and-shift operation,
we used splitters instead of mergers and the data movement is in opposite direction of the load-
and-shift operation. Figure 16 and Figure 17 depict the basic operation of the bit-serial
implementation.

 An NDRO cell

Figure 16. Bit-serial implementation of the 4-bit integer divider. HSM: Half Subtractor with Multiplexer; FS: Full
Subtractor; FSM: FS with Multiplexer.

Figure 17. Shift register for the load-and-shift operation.

4. Design of multiple fanout circuits for clock-tree network

 Rapid Single Flux Quantum (RSFQ) logic cells have traditionally been limited to driving one
fanout cell only, due to complications in distributing the single flux quantum pulse to multiple
fanouts. However, we presented a method to modify the interface of standard RSFQ cells in
order to support multiple fanouts. For clock distribution, having multiple fanout drive capability
is very important as the RSFQ logic is gate-level pipelined and requires clock for every logic
operation. In general, the clock signal is split using splitter cells to provide the signal to different
cells in the same logic circuit. To support multiple fanouts without using splitter cells, the basic
idea is to connect the output of one splitter to more than one gate, and compensate the input

0 d3 d2 d1 d0
Load and Shift
Data bits

Save and Shift
Quotient bits

DFF Merge

Clk

DFF Merge

Clk

DFF Merge

Clk

Data0

Data1 Data2 Data3

Approved for Public Release; Distribution Unlimited.
18

current reduction by increasing the bias current of the Josephson junctions at the receiving end of
the fanout. This helps simplify the clock routing process and reduces area usage but it also tends
to decrease the circuit margins. However, we show that the yield is not compromised by our
proposed technique and thus we present an algorithm for modifying the interface of RSFQ logic
cells for this purpose. Details of the implementation could be found in [4].

3.4. Cell Placement, Clock Tree Design and Routing in RSFQ-Based Circuits
This part describes several prototype software tools for synthesis and physical design of single-
flux quantum (SFQ) logic circuits, including a standard cell characterization tool, a static timing
analysis tool, a frontend synthesis, and a backend placement and routing tool. The overall flow is
shown in Figure 18.

The tool suite used for logic synthesis, placement, clock tree synthesis and routing, called
RSFQ_Mapper, receives as an input a high-level description of the design in Verilog HDL or
BLIF formats and maps it to a RSFQ chip.

The mapping process is comprised of the following tools:

1. A logic synthesis tool, based on ABC with proper modifications and new features to
generate RSFQ-compatible netlists.

2. A placement tool, which is written for RSFQ circuits, and uses the following tools:
a. A global placement algorithm to generate global ordering for all the cells while

reducing the total wirelength
b. A Clock tree synthesis tool called BST/DME: This tool is used to find the

locations of clock splitters for constructing the H-tree clock network.

Figure 18. Overall design flow.

Approved for Public Release; Distribution Unlimited.
19

c. A Detailed placement tool to further refine the placement solution.
d. A legalization algorithm to remove cell overlaps and produce final legal solution.

3. Routing tool based on a maze router algorithm using an open-source tool (Qrouter).
The final output of the "RSFQ Mapper" is a placed-and-routed netlist in Design Exchange
Format (DEF). The mapper can also draw the final layout of the chip using Magic. Each part of
RSFQ_Mapper is explained in details as follows:

3.4.1. Proposed Placement and Clock Tree Synthesis Tool
The outcome of logic synthesis tool, is a netlist consisting of cells and their connection. Based on
the total area of the cells and total number of I/O pads, the width and height of the chip is
calculated. Once the chip floorplan and position of I/O pads is determined, cells should be placed
on the chip such that total wirelength of the nets is minimized. Proposed placement flow is
shown in Figure 19. Overall placement flow.

First, a global placement algorithm is performed which distributes the cells in the chip. We use
SimPL [5], one of the state-of-the-art placement algorithms that is fast and multiple objectives
can be easily integrated within its flow for the global placement step. The global placement
algorithm is described in [5]. It starts with an initial uniform placement which distributes cells
randomly in the chip area. Based on this initial placement, and Bound to Bound net model [6], a
system of linear equations is formed, and solved to produce new locations for all the cells, such
that total wirelength, which can be modeled by the half-perimeter wirelength (HPWL), is
minimized. This step is repeated 5-7 times, until total wirelength improvement converges. This
step reduces the wirelength significantly but leads to a lot of overlap in the middle of the chip.

Figure 19. Overall placement flow.

Approved for Public Release; Distribution Unlimited.
20

Consequently, to remove the overlaps and produce a legalized solution while maintaining the
solution quality, the Look Ahead Legalization (LAL) algorithm is performed. This algorithm
removes the overlap by placing pseudo anchors to create expansion forces and discourage
overlaps. Once the expansion forces are formed, the system of linear equations is updated and
solved to produce new positions. This step is repeated several times (at most 55 times), and at
each step total HPWL is increased because of legalization.

We have implemented the SimPL placement algorithm using C++. Once the global ordering of
the cells is determined, all cells are legalized to remove any potential overlaps and a detailed
placement algorithm is run to further improve the placement quality. Although the outcome of
this step could be directly used for clock tree synthesis and routing, this may lead to a large cell
area and degraded performance. In current RSFQ technology all the cells have a fan-out of 1 and
to propagate the signals to more than one fan-out, splitters should be used. Thus, a complete H-
tree with n clock sink nodes needs n-1 clock splitters (assuming 𝑛𝑛 = 2𝑚𝑚) which leads to a large
area dedicated to clock tree network. Furthermore, almost all the cells in the SFQ netlist need a
clock signal, whereas in CMOS designs, 15-20% of the cells receive clock signals. Moreover, the
total number of metal layers in current technology is limited. The above issues motivate a clock
tree aware approach to reduce the size of the clock tree network which leads to lower total chip
area and higher clock frequency, as final frequency is a function of longest path and hence chip
area.

To reduce the area dedicated to the clock network, cells of the same logic level are clustered and
a clock signal is propagated to each cell group, rather than each individual cell. This clocking
scheme, called an HL-tree clock network, is shown in Figure 20. The top portion of each cell
which includes a splitter and JTL is used to propagate a clock signal locally to the other cells in a
cell group (super-cell).

After global placement, legalization, and detailed placement, we examine each cell row one at a
time. In each cell row we start from the left side and move toward the right hand side, creating
groups of cells such that each cell group has at most k cells with the exact same logic level. Each

Figure 20. HL-tree clock network with a group size of 4.

Approved for Public Release; Distribution Unlimited.
21

such cell is called a super-cell. These super-cells are then placed in the same row based on the
initial ordering of the first cell added into the cell group. Finally, the clock sink nodes are
determined, and the clock tree synthesis engine propagates the clock signal to all clock sinks
using a zero-skew tree (BST/DME algorithm [7]). BST is implemented in two phases. A
bottom-up phase constructs a binary tree of merging regions which represent the loci of possible
embedding points of the internal nodes, and a top-down phase determines the exact locations of
the internal nodes [7].

Once the clock tree is built, splitter cells are inserted into the routing channel to propagate the
clock signal from the source to all the sinks. The placement tool receives the input netlist in the
Bookshelf format [8] and a variable, which serves as an upper bound on the cell group sizes (the
default value is set to one, which means that no cell grouping will be done and the initial
placement is used, resulting in a complete H-tree clock network.)

Furthermore, to improve the clock routing and decrease the total wirelength dedicated to clock
routing, 8 different instances of clock splitter cell are used. These vary in the postiton of the
driver and the two fan-outs of each clock splitter cell. The different implementations of clock
splitter cells are shown in Figure 21.

Based on the location of driver and fan-outs, one of the 8 splitters is chosen and placed as part of
the clock tree. This approach was tested on a 32bit Kogge-Stone adder with 2415 nets and 2852

Figure 21. 8 different instances of clock splitter cells.

Approved for Public Release; Distribution Unlimited.
22

clock splitter cells, which results in a 9% reduction in total wirelength of clock nets and a16%
reduction in max via count. After the placement and clock tree synthesis, the placed netlist
(including cells, I/O pins, and clock tree splitters) is passed to the routing tool to route clock and
signal nets.

3.4.2. Proposed Routing Tool
Given a placed netlist and technology information, the routing problem is to determine the
necessary wiring, including net topologies and specific routing segments, to connect the pins of
all the cells while meeting the design rule constraints and the routing resource capacities. The
inputs to the routing program, Qrouter [9], are given in open standard library exchange format
(LEF) and design exchange format (DEF) files, which together represent the complete physical
layout of an integrated circuit in an ASCII format. Specifically, LEF includes design rules and
abstract information about the cells, whereas DEF represents the netlist and circuit layout. Both
files are compatible with most fabrication processes as most vendors supply standard cell
definition in a compatible LEF file readable by most EDA layout tools with the detailed routing
geometry.

Like the placement problem, routing of signal nets is performed in two steps. (i) Global routing,
whereby wire segments are tentatively assigned to coarse-grain routing regions and (ii) Detailed
routing, whereby specific routing tracks, vias, and appropriate segments of metal layers are
assigned to each net in a manner that is consistent with the given global route of the net in
question. Accordingly, the detailed router must account for design rules. Global routing
algorithms can be classified into two approaches: (i) concurrent and (ii) sequential [10]. The first
approach is not suitable for large circuit routing problems, because it results in a large integer
linear programming problem (which is an NP-hard optimization problem) without a polynomial
time solution. The latter approach may be further classified as restricted or general purpose
routing. The general-purpose algorithm consists of maze router and line-search algorithms. The
maze router with the shortest path guarantee is based on Lee’s algorithm and can find all the
existing paths among the grids without exceeding the constrained cost function. The line-search
algorithm cannot promise the shortest path but can be significantly more efficient [11]. Since the
delay after Josephson transmission line (JTL) transmission is comparable to the gate delay, the
shortest path should be guaranteed by the routing algorithm in the worst case.

In current designs, we do not use JTLs for signal routing, since (i) JTLs require JJs and hence
occupy the active layer, which in turn complicates the placement tool, and (ii) JTLs are slower
than PTLs especially for long-distance communications. Therefore, signal routing is done either
by direct connection if the source and destination pins are abutted or by PTLs otherwise.
Accordingly, we will have different templates for the logic part of the standard cells. As an
example, Figure 22 shows a template for a 2-input gate.

Approved for Public Release; Distribution Unlimited.
23

Our routing tool will be built on top of the open-source Qrouter tool [9], which is developed
based on the standard Lee’s algorithm. Given LEF and DEF files, the routing area is partitioned
into a 2-dimensional grid of routing tracks. A wave propagation method connects the identified
source and target nodes while avoiding obstructions during propagation and calculates the
corresponding cost along multiple paths. The L-shaped or doglegged paths with the lowest cost
are then traced back to the source node from the target and committed to memory, as shown in
Figure 23.

The grid positions occupied by routed paths become obstructions for future routes on other nets
(or become additional source or target nodes for further routing of the same net). There are two
steps to complete the routing of a circuit. After sorting nets in the order determined by the
longest Manhattan distance of two nodes in a net, the first step seeks to find the routing solution
for each net one at a time without exceeding a cost function determined by the segment cost
times the distance, while keeping track of any failed nets in a netlist [12]. In the second step,
each net that has failed is routed again, allowing the net to create electrical shorts with other
routed nets. At the same time, the routing cost bound for the said net is increased exponentially
to maximize the chance of routing success. Subsequently all such newly shorted nets are
removed and added to the list of failed routes, to be re-routed at a later time as shown in Figure
24.

Figure 24. Rip-up-and-re-route process of two nets, (a-a) and (b-b).

Figure 23. A wave propagation method of Lee’s maze router algorithm.

Figure 22. A template for the logic part of a standard cell that implements a 2-input Boolean gate.

Approved for Public Release; Distribution Unlimited.
24

This process continues until all nets have been routed. To avoid an infinite loop in this iterative
rip-up-and-re-route process, the same sequence of rip-up and re-route for two nets is not allowed
to happen more than once.

Table 1. Routing Cost Parameters.

ROUTING COST VALUE
SEGMENT COST 1

JOG COST 20
VIA COST 25

CROSSOVER COST 1

Table 1 shows the details of routing cost parameters. Segment cost determines the cost of routing
a segment in the preferred direction; jog cost denotes the additional cost of one routing segment
in the direction other than the preferred one; via cost shows the cost of going from the metal
layer i to metal layers (i+1) or (i-1). Crossover cost is the cost of routing directly over or under
an unrouted pin connection to a cell.The segment cost was set by the minimun integer as a
reference value. High jog cost and via cost were used to ensure that the Qrouter chooses a detour
path on a single metal layer instead of one with multiple vias and different metal layers.

Figure 25 shows cell routing transparency of a 2-input AND gate given four routing metal layers,
which in turn defines over-the-cell routing capacities in each routing direction. We defined signal
ports of inputs and outputs in the bottom metal layer (metal 1) and clock ports of inputs and
outputs in the top metal layer (metal 4). The bias pillars at the four corners of the cell obstruct
routing on all layers. The design rule constraints require that the minimum distance between the
centers of two wires is one pitch (10 µm). The routing capacities of the bottom layer over the cell
for Qrouter thus are confined by the signal ports of both inputs and outputs. A similar condition
applies to the top layer, this time by clock ports, but there are more allowable routes over cells of
other routing layers in between. Consequently, the Qrouter prefers routing long-distance nets by
utilizing middle metal layers because of their higher flexibility.

Figure 25. Cell Routing Transparency of a 2-input AND gate.

Approved for Public Release; Distribution Unlimited.
25

We developed a parser in C language to transform the bookshelf format [8] into DEF/LEF
format as input files and designed a feedback routing system integrating Qrouter to find a
complete routing layout for a VLSI circuit. See Figure 26.

To begin with, the parser aligns each cell within the specified routing grid defined by the pitch
width in both x and y coordinates after receiving placement results. The extra space between
rows and columns is introduced for more routing resources given the strictly constrained routing
layers of current technology. The feedback system, written in Perl, introduces addition of extra
space between rows uniformly once it receives the incomplete routing result generated by
Qrouter. The temporary routing result determines the next modulation of the space
corresponding to failed nets of the whole layout.

There are three modulation parameters of 7, 3, and 1 pitch size introduced between cells
corresponding to the three possible outcomes determined by the magnitude of a failed net of 200
and 100 after each routing. A program written in Perl then performs the statistical analysis of
complete or partial routing results for further comparisons such as average via counts and the
longest routing path. This feedback routing system has accomplished 4-bit, 8-bit, 16-bit, 32-bit
Kogge-Stone Adder and 8-bit, 16-bit Integer Divider with a H-Tree clock network topology.
In summary, the following software developments were completed: (1) parsers, converting file
formats required by different EDA tools (2) a feedback routing system, completing all net
routings (3) a statistical analysis software, reporting layout results after the routing system.

3.4.3. Interconnect Delay and Frequency Modeling in RSFQ Circuits
Delay of signal propagation through a PTL line can be calculated as

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑡𝑡ℎ (𝜇𝜇𝜇𝜇)

100 (𝜇𝜇𝜇𝜇/𝑝𝑝𝑝𝑝)
 (1)

SFQ circuits can work properly with zero-skew clock distribution networks such as the one
shown below. Consequently, a min clock cycle could be calculated as

Figure 26. A feedback system design of the routing stage based on Qrouter.

Approved for Public Release; Distribution Unlimited.
26

𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 ≥ 𝑡𝑡𝑐𝑐2𝑞𝑞 + 𝑡𝑡𝑝𝑝𝑡𝑡 + 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑡𝑡𝑟𝑟𝑡𝑡 + 𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 (2)

where 𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 represents min clock period, 𝑡𝑡𝑐𝑐2𝑞𝑞 and 𝑡𝑡𝑝𝑝𝑡𝑡 (𝑡𝑡𝑟𝑟𝑡𝑡) denote the Clock-to-Q delay of the
source cell (~7ps) and PTL transmitter (receiver) delay (~2ps). 𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 account for the setup time
of the destination cell (~3ps) and 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 , which denotes the PTL delay, can be calculated using
equation 1.

Using the estimated values for 𝑡𝑡𝑐𝑐2𝑞𝑞, 𝑡𝑡𝑝𝑝𝑡𝑡 (𝑡𝑡𝑟𝑟𝑡𝑡), and 𝑡𝑡𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝 , the minimum clock period can be
simplified as

𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 ≈ 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 + 14 ps (3)

If the proposed HL-tree clock network is implemented, using a group size of k, the delay of
linear clock propagation in cells of the same delay is added to the total clock cycle value. The
minimum clock period for an HL-tree clock network is calculated as follows:

𝑡𝑡𝑐𝑐𝑝𝑝𝑐𝑐 = 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 + 14𝑝𝑝𝑝𝑝 + (𝑘𝑘 − 1) ⋅ 𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 (4)

where 𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 accounts for the delay of the splitter cell used for splitting the clock signal and
passing that to the next cell in the same group. It is based on MIT-LL SFQEE5 process
technology and is equal to 2 ps. Examples of H-tree and HL-tree clock routings (for the linear
propagation portion of the clock tree) are shown in Figure 27 and Figure 28, respectively.

Figure 27. H-tree clock network.

Figure 28. HL-tree clock propagation delay.

Approved for Public Release; Distribution Unlimited.
27

Using the HL-tree clock leads to a higher clock cycle and a lower clock frequency. However, it
can decrease the total cell area significantly. With cell sizes based on the MIT-LL SFQEE5
process technology as shown in Figure 29, area savings for using HL-tree clock network are
shown in Figure 30.

In the above example (c.f. Figure 30), it is assumed that there are a total number of 30 rows, and
there are 48 cells in each row. Using a group size of k=4, the area is reduced by 13% while the
minimum clock cycle increases by 6ps. In the above example, the delay of the PTL line (𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝) ,
which is typically equal to the half-perimeter of the chip, assuming average cell width of 40 𝜇𝜇m
and height of 120 𝜇𝜇𝜇𝜇, is equal to 30∗120+40∗2∗48

100
 = 74.4 𝑝𝑝𝑝𝑝. Consequently, the clock frequency

decreases by 8%, hence area*delay improves using the HL-tree clock network.

4. RESULTS AND DISCUSSION

To evaluate the methodologies and algorithms developed for RSFQ design, we have synthesized
multiple arithmetic circuits as described in section 3.3, and performed placement, clock tree
synthesis, and routing to generate the layout of these circuits. The post place and route results for
some of these circuits are shown in Table 2.

-0.01

8

13

21

-1
4
9

14
19
24

k=2 k=3 k=4 k=8

Area Saving (%) in HL-Tree
compared with H-Tree

Figure 30. Percentage of area savings using HL-tree clock network with group size of k. Total number of 30 rows and
48 cells per row is assumed.

Figure 29. Cell Structure for (a) H-tree clock network (2) HL-tree clock network.

Approved for Public Release; Distribution Unlimited.
28

It can be seen that, using the proposed HL-tree clock network, the total area for the 8-bit integer
divider decreases by 18% which proves the effectiveness of this approach.

As part of post place-and-route verification, we synthesized Verilog simulations directly from
LEF/DEF post place-and-route file combinations. In this step, every component is linked to an
equivalent simulation module for the component, as extracted with TimEx. Pulse transmission
delay is modeled by calculating a delay time from the interconnect length, and inserting this
delay between the output of a source component and the input of a target component. We use the
open source HDL simulator iverilog for this project, but iverilog does not support wire delay
assignments. An elegant work-around was thus developed that links every output to a wire, every
input to a register, and then assigns the wire value to the register with the correct delay. This
verification step validates the HDL cell library functionality as well as the synthesis, placement
and routing steps.

As a demonstration, a 4-bit Kogge-Stone Adder with an H-Tree clock was extracted to a
simulation model, and simulated successfully up to 50 GHz. The simulation includes accurate
timing of all gates and wire delays, but does not include jitter.

Table 2. Post place and route results for some arithmetic circuits.

Approved for Public Release; Distribution Unlimited.
29

Icarus Verilog was used to test the operation of the simulated model. Figure 31 shows the
console output for a 4-bit Kogge-Stone adder as the Device Under Test (DUT) with a clock cycle
of 1000 ps. It is observed in Figure 31 that the component operates as designed when driven by a
1 GHz frequency clock.

5. CONCLUSIONS

The effort of this Seedling project was to develop a prototype, open-source suite of tools for
synthesis and physical design of RSFQ logic circuits. Throughout the process, a generic RSFQ
cell library was developed with which to test the tool suite, and an automated HDL extraction
tool was developed to find accurate timing models for all library cells. A Static Timing Analysis
module was also developed to find the highest operating frequency without the use of pipelining,
which presents the worst-case clock frequency for a circuit. Furthermore, we developed and
implemented various methodologies for synthesis of RSFQ circuits, and integrated them into an
open-source framework for logic synthesis (ABC [2]). Additionally, we developed a complete
placement and clock tree synthesis flow to efficiently place large number of gates into the chip
area, and create a clock network to propagate the clock signal to all the gates, while reducing the
total wirelength and chip area. Finally, we utilized and open-source router tool (Qroute [9]) to
perform the signal connections.

Publications Arising from This Seedling Project:

1. N. Katam and M. Pedram. “SFQ Circuit Design and Efficient Implementation of a 16-Bit Integer
Divider Circuit,” draft, to be submitted to IEEE Trans. on Applied Superconductivity, 2017.

2. C. J. Fourie. “Flux Loop Analysis for SFQ Circuit Optimization and Automatic Extraction of
Verilog Models,” draft, to be submitted to IEEE Trans. on Applied Superconductivity, 2017.

3. N. Katam, A. Shafaei, and M. Pedram. ”Design of Complex Rapid Single-Flux-Quantum Cells
with Application to Logic Synthesis,” Intern. Superconductive Elec. Conf., Jun 2017.

4. J. A. Delport, and C. J. Fourie, “Static Timing Analysis for Pre- and Post-placed Superconducting
Circuit Electronics,” Intern. Superconductive Elec. Conf., Jun 2017.

Figure 31. Verilog verification of the operation of a 4-bit Kogge-Stone adder at 1 GHz.

Approved for Public Release; Distribution Unlimited.
30

5. C. J. Fourie, “Flux Loop Analysis for RSFQ/ERSFQ Circuit Functionality Evaluation,
Optimization and Timing Extraction.” Intern. Superconductive Elec. Conf., Jun 2017.

6. S. Nazar-shahsavani, T. R. Lin, A. Shafaei , C. J. Fourie and M. Pedram. "An Integrated Row-
Based Cell Placement and Interconnect Synthesis Tool for Large SFQ Logic Circuits," IEEE
Trans. on Applied Superconductivity, Vol. 27, No. 4, Mar. 2017.

7. N. Katam, A. Shafaei, and M. Pedram. ”Design of Multiple Fanout Clock Distribution Network
for Rapid Single Flux Quantum Technology,” Proc. of Asia and South Pacific Design
Automation Conf., Jan. 2017.

8. J. A. Delport, P. J. Peiser, N. Katam, M. Pedram, and C. J. Fourie, “SFQ logic cell library design
for automated row-based layout,” IEEE Applied Superconductivity Conf., Denver, Colorado, 4-9
Sept. 2016.

Approved for Public Release; Distribution Unlimited.
31

References

[1] L. C. Müller and C. J. Fourie, "Automated state machine and timing characteristic extraction for
RSFQ circuits," IEEE Trans. Appl. Supercond., vol. 24, p. 1300110, 2014.

[2] "A System for Sequential Synthesis and Verification. [online] Available:
https://people.eecs.berkeley.edu/~alanmi/abc/".

[3] "Berkeley Logic Interchange Format (BLIF). [online] Available :
https://www.cse.iitb.ac.in/~supratik/courses/cs226/spr16/blif.pdf".

[4] A. S. a. M. P. N. Katam, "Design of Multiple Fanout Clock Distribution Network for Rapid Single Flux
Quantum Technology," in Proc. of Asia and South Pacific Design Automation Conf., 2017.

[5] D. L. a. I. L. M. MyungChul Kim, "SimPL: An Effective Placement Algorithm," 2011.

[6] U. S. a. F. M. J. P. Spindler, "Kraftwerk2 : a fast force-directed quadratic placement approach using
an accurate net model," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems,, Aug 2008.

[7] A. B. K. C.-K. K. a. C.-W. A. T. J. Cong, "Bounded-skew clock and steiner routing," ACM Trans. Des.
Autom. Electron. Syst, 1998.

[8] "Bookshelf As a New Electronic Medium. [online] Available:
http://vlsicad.eecs.umich.edu/BK/elemed.html".

[9] "Open Circuit Design. [online] Available:opencircuitdesign.com".

[10] H. -Y. C. a. Y.-W. Chang, "“Global and detailed routing,” Electronic Design Automation: Synthesis,,"
2009.

[11] S. M. S. a. H. Youssef, "“Grid Routing,” VLSI Physical Design Automation: Theory and Practice,".

[12] C. Y. Lee, "An Algorithm for Path Connections and Its Applications".

Approved for Public Release; Distribution Unlimited.
32

List of Acronyms
ABC Logic Synthesis tool name
BFS Breadth First Search
BLIF Berkeley Logic Interchange Format
BST/DME A Clock tree synthesis tool
CLA Carry Look-ahead Adder
CMOS Complementary Metal Oxide Semiconductor
DC Direct Current
DCSFQ DC-to-SFQ Converter
DEF Design Exchange Format
DFF D Flip-Flop
DUT Device Under Test
EDA Electronic Design Automation
ERSFQ Energy Efficient Single Flux Quantum
FSM Full Subtractor with Multiplexer
GDS Graphic Database System
HDL Hardware Description Language
HL-tree Hybrid clock tree with No skew and Linear
HPWL Half-Perimeter Wirelength
HSM Half Subtractor with Multiplexer
H-tree No skew Clock distribution tree
I/O Input /Output
JJ Josephson Junction
JSIM Josephson junction circuit Simulator
JTL Josephson Transmission Line
LAL Look Ahead Legalization
LEF Liberty Exchange Format
MIT-LL Massachusetts Institute of Technology- Lincoln Laboratory
NDRO Non-Destructive Readout
PB Path Balancing
PTL Passive Transmission Line
Qrouter Routing tool
RSFQ Rapid Single Flux Quantum
SFQ Single Flux Quantum
SimPL Placement algorithm
STA Static Timing Analysis
TimEx Tool name
VLSI Very Large Scale Integration
βC Stewart-McCumber parameter

	LIST OF FIGURES
	LIST OF TABLES
	1. SUMMARY
	2. INTRODUCTION
	3. METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1. Standard HDL-Enabled Cell Library for RSFQ Logic and Characterization of Cells
	3.1.1. Investigate and develop a generic HDL timing model of RSFQ circuits
	3.1.2. Characterize and release a standard cell library in HDL format
	3.1.3. Develop a library characterization prototype tool
	3.1.4. Validate and fine-tune the tool

	3.2. Techniques and Tools for Static Timing Analysis In RSFQ-Based Circuits
	3.2.1. Develop an STA technique for RSFQ circuits
	3.2.2. Develop an STA prototype tool
	3.2.3. Validate and fine-tune the tool

	3.3. Logic Synthesis Algorithms for RSFQ Circuits
	3.3.1. Specifications of Cell Library and Input Design
	3.3.2. Path-Balancing
	3.3.3. Splitter-Insertion for Fanouts

	3.4. Cell Placement, Clock Tree Design and Routing in RSFQ-Based Circuits
	3.4.1. Proposed Placement and Clock Tree Synthesis Tool
	3.4.2. Proposed Routing Tool
	3.4.3. Interconnect Delay and Frequency Modeling in RSFQ Circuits

	4. RESULTS AND DISCUSSION
	5. CONCLUSIONS
	References
	List of Acronyms

